
Big Oh Time Efficiency* Examples 
 

O(1) — constant 
• finding a median value in a sorted array 
• push, pop, peek, & isEmpty methods in Stack 
• add, remove, peek, & isEmpty methods in PriorityQueue 
• finding a key in a lookup table 
• finding a key in an efficient, sparsely populated hash table 
• retrieving a target value in an efficient, sparsely populated hash table 
• adding an element to the end of an ArrayList 
• addFirst, addLast, getFirst, getLast, removeFirst, & removeLast methods in LinkedList 
• put, get, containsKey, & size methods in HashMap 
• add, remove, contains, & size methods in HashSet 
 
O(log n) — logarithmic 
• Binary Search (array must be sorted) 
• searching a balanced binary search tree (worst case is O(n) if BST is unbalanced) 
• inserting a node into a binary search tree 
• add and remove methods in PriorityQueue (implemented as a heap) 
• containsKey, get, & put methods in TreeMap 
 
O(n) — linear 
• traversing a List (e.g. finding max or min) 
• sequential search through an array or ArrayList 
• calculating the sum of n elements in an array, ArrayList, List, or Set 
• calculating n-factorial with a loop 
• calculating Fibonacci numbers with a loop 
• traversing a tree with n nodes 
 
O(n log n) — “n log n” time 
• Mergesort 
• Quicksort 
• Heapsort 
• creating a binary search tree if nodes inputted in random order leading to a balanced BST (worst case is O(n2)) 
 
O(n2) — quadratic 
• Selection Sort 
• Insertion Sort 
• Bubble Sort 
• traversing a two-dimensional array 
• finding duplicates in an unsorted list of n elements (using nested loops) 
 
O(an) (where a > 1) — exponential time 
• Recursive Fibonacci implementation 
• Towers of Hanoi 
• Generating all permutations of n letters 
 
 
 
* most efficiencies are best case or average case unless noted 
 


