
Big Oh Sorting & Searching Summary 
 
Sorts 
 
1) Selection 
a) Big O best case time - O(n2) 
b) Big O ave case time - O(n2) 
c) Big O worst case time - O(n2) 
d) worst case data set - reverse order 
e) space requirements - one array 
f) other characteristics or comments - two nested loops, terribly, slow sort, inefficient for n>100 data 
sets, many comparisons, could be many assignments if in reversed order, only one swap per pass of the 
inner loop, no early exit 
 
2) Bubble 
a) Big O best case time - O(n) 
b) Big O ave case time - O(n2) 
c) Big O worst case time - O(n2) 
d) worst case data set - reverse order since a lot of values must "bubble down" 
e) space requirements - one array 
f) other characteristics or comments – two nested loops (for nested in a while typically) with early exit in the 
outer loop, good when the data is mostly sorted to start with, could cause a lot of swaps 
 
3) Insertion 
a) Big O best case time - O(n) 
b) Big O ave case time - O(n2) 
c) Big O worst case time - O(n2) 
d) worst case data set - reverse order 
e) space requirements - only one array if you are efficient but commonly done with two arrays (1 
unsorted, other sorted), two nested loops 
f) other characteristics or comments – good when the data is mostly sorted to start with, absolutely terrible 
in many cases, aka poker hand sort, early exit from inner loop 
 
5) Quick 
a) Big O best case time - O(n log n) 
b) Big O ave case time - O(n log n) 
c) Big O worst case time - O(n2) 
d) worst case data set - when poor pivot values are chosen such as if data is in order and first element 
of array is used as pivot element 
e) space requirements - Big O for space is O(n) in worst case, one array in each recursive stack frame 
f) other characteristics or comments – on average this is the fastest known algorithm, may be worthwhile to 
randomize the data so that data is not close to sorted before using quick sort 
 
6) Merge 
a) Big O best case time - O(n log n) 
b) Big O ave case time - O(n log n) 
c) Big O worst case time - O(n log n) 
d) worst case data set - none 
e) space requirements - high, log n recursive stack frames each with a separate array 
f) other characteristics or comments - good to use if data compared to the quick sort if the data is 
almost sorted 
 
7) Heap 
a) Big O best case time - O(n log n) 
b) Big O ave case time - O(n log n) 
c) Big O worst case time - O(n log n) 
d) worst case data set - more swaps if data is in reverse order, but no real worst case since the order of 
the input items do not significantly affect its efficiency 
e) space requirements - one array though in some implementations people use two arrays (one for the 



heap and one for the sorted values), considered to be an "in-place" sort since it requires no temporary 
storage 
 
f) other characteristics or comments - very efficient for large n, two phases to th is algorithm: 
putting values into a heap (i.e. binary tree with the heap property) and then "picking" the sorted values out 
of the heap one-by-one 
 
8) Radix 
a) Big O best case time - O(n) 
b) Big O ave case time - O(n) 
c) Big O worst case time - O(n) 
d) worst case data set - if data elements are large it will consume a lot of memory 
e) space requirements - excessive 
f) other characteristics or comments - not suitable for all types of data such as floating-point values, 
has a large constant of proportionality despite being O(n) 
 
Searches 
 
1) Sequential 
a) Big O best case time - O(1) 
b) Big O ave case time - O(n) 
c) Big O worst case time - O(n) 
d) worst case data set - if key is not found 
e) space requirements - one array 
f) other characteristics or comments - easy to write code, okay for small n 
 
2) Binary 
a) Big O best case time - O(1) 
b) Big O ave case time - O(log n) 
c) Big O worst case time - O(log n) 
d) worst case data set - if key is not found 
e) space requirements - one array 
f) other characteristics or comments - data must be ordered 
 
3) Lookup & Hash Tables 
a) Big O best case time - O(1) 
b) Big O ave case time - O(1) 
c) Big O worst case time - O(n) 
d) worst case data set - if there are many elements that hash to the same bin (i.e. many collisions) 
e) space requirements - excessive 
f) other characteristics or comments - depends on the hash function and whether duplicate elements. 
If there are duplicate elements, the efficiency of the collision strategy is important. 
 


