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ABSTRACT

While a polynomial of degree m has at most m distinct roots in a 
field, it may have more than m roots in the ring of integers modulo n.  
The objective of this research is to describe a method for counting the 
number of roots of a polynomial in a ring modulo n without having to 
calculate each root.  This research extends the work of Scott Fabbri, 
who examined polynomials of the form x2 − a2 ≡ 0  in Z/nZ where a2

 

divides n.  This work examines polynomials of the same form where a2
 

and n are relatively prime.  A rule is stated which tabulates the 
number of roots to any such polynomial and a method for building a 
polynomial with a given number of roots is also detailed.

This research examines polynomials of the form x2 − a2 ≡ 0  in Z/nZ 

where a2
 and n are relatively prime.  Three main results will be 

demonstrated:

1/ Given n, the number of roots can be predicted.
2/ The number of roots for any given n is always a power of 

two.
3/ A rule for building a polynomial with a given number of roots 



is specified.

LEMMA 1. When (a,n) = 1, x2 − a2 ≡ 0 (mod n) has the same number of 

roots as x2 −1 ≡ 0 (mod n).

Proof: Let y be a root to x2 − a2 ≡ 0 (mod n)

then y
2 ≡ a2

(mod n)

⇔ y2 (a−1)2 ≡ 1(mod n)

⇔ (ya−1)2 −1 ≡ 0(mod n)

So ya−1

 is a corresponding root for x2 −1 ≡ 0 (mod n).

Furthermore ya−1

 is unique because for any root z to 

x2 − a2 ≡ 0 (mod n) where z does not equal y, za−1
 does not 

equal ya−1

 

Next, given n, it is determined how many roots there are to x2 −1 ≡ 0

(mod n). First , note that 1 and n-1 are always roots since 1
2 −1 ≡ 0(mod 

n) and (n −1)2 −1 ≡ 0 n(n − 2) ≡ 0 (mod n). 

Since x2 −1 ≡ 0 (mod n) can be rewritten as x2 ≡1(mod n), finding roots 

is equivalent to finding elements of order 2 in the multiplicative group 

of Zn (that is, Zn
*

). Note that 1, the unity, is also a root. Note that Zn
*

 is 

isomorphic to Zq1
1

*
× Zq2

2

*
× Zq3

3

*
× . . .× Zqn

n

*
 where n = q1

1q2
2 q3

3 ... qn
n

 is the 

prime factorization of n. Gauss shows that:

a/ if p is an odd prime, then Z pm
*

 and Z2 pm
*

 are cyclic groups of 

order k=(p-1)pm-1 for all natural numbers m and both are isomorphic 
to Zk , which has one element of order two, namely k/2.

b/ if p = 2, then



Z2
*
 is cyclic of order 20 = 1.

Z22
*

 is cyclic of order 21 = 2 and it is isomorphic to Z2, which 

has one element of order two, namely 1.

Z2 m
*

 is the direct product of a subgroup of order 2 and a 

cyclic subgroup of order 2m-2 and it is isomorphic to Z2× Zm-2, 

which has three elements of order two (ie. (0,

m − 2

2 ), 

(1,

m − 2

2 ), and (1,0)).

Therefore the number of elements of order two in Zn
*

 is dependent on 

the number of different prime factors of n and the power of 2 in the 
prime factorization of n.  Gauss' work and Lemma 1 lead to the 
following theorem concerning the number of roots to x2 −1 ≡ 0 (mod n).  

Keep in mind that the unity satisfies the polynomial in every case.  

THEOREM 1. Let z be the number of different odd prime factors of 
n, let r be the number of roots and let m be the 
highest power of two that divides n.

i/ r = 2z if m = 0 or 1
ii/ r = 2z+1 if m = 2
iii/ r = 2z+2 if m ≥  3

Obviously, the number of roots is always a power of two.  Lemma 1 
proves that these formulas apply to polynomials of the form x2 − a2 ≡ 0

(mod n) where (a,n)=1.  Armed with Theorem 1, a rule for building a 
polynomial with a given number of roots can now be specified in the 
next theorem.  

THEOREM 2. For any given number of roots, r, which must be a 
power of two, n can be specified for which the 
equation, x2 − a2 ≡ 0  (mod n), will have r roots.  

Different rules apply to the following cases:



a/ If it is desired for n to be odd, construct n as the product of 
log2r odd prime factors (each having any power).

Example- To construct a polynomial with 8 roots, take the 
product of 3 (log28) odd prime factors as n such as n = 3•5•7 = 105.

b/ If n must be even but not divisible by 4, construct n as the 
product of log2r odd prime factors (each having any power) and 2.

Example- To construct a polynomial with 16 roots where n is 
even but not divisible by 4, construct n as the product of 4 (log216) 
odd prime factors and the number 2 such as n = 3•5•7•11•2 = 2310.

c/ If n must be even and divisible by 4, construct n as the 
product of log2r-1 odd prime factors (each having any power) and 
four.

Example- To construct a polynomial with 32 roots where n is 
even and divisible by 4, construct n as the product of 4 (log232-1) odd 
prime factors with the number 4 such as n = 3•5•7•11•4 = 4620.

d/ If n must be even and divisible by 2 to some power greater 
than 2, construct n as the product of log2r-2 odd prime factors (each 
having any power) and 2 to the necessary power. 

Example- To construct a polynomial with 64 roots where n is 
even and divisible by 16, construct n as the product of log264-2 = 4 
odd prime factors and the number 16 such as n = 3•5•7•11•16 = 1
8480.

According to the rules above, the smallest value n, for which the 
polynomial, x2 − a2 ≡ 0 (mod n), has:

 8 roots is 3•8 = 24.
16 roots is 3•5•8 = 120.
32 roots is 3•5•7•8 = 840.
64 roots is 3•5•7•11•8 = 9240.



128 roots is 3•5•7•11•13•8 = 120120.

Each "smallest" value of n is found by taking the product of the 
smallest consecutive odd primes and 23.  Each odd prime "contributes" 
a factor of two in the resulting number of roots. A factor of four is 
"contributed" towards the number of roots by 23. 

FUTURE RESEARCH

While this theory explains a method for counting the number of 
roots to x2 − a2 ≡ 0 (mod n) where a and n are relatively prime, it could 

be extended to include a method for counting the roots when a and n 
are not relatively prime and a

2
 does not divide n.  It is conjectured 

that the roots can be counted similarly by counting odd prime factors 
of n and noting two's divisibility into n as long as the common factors 
(except for two) between a and n are ignored.  For example, with a=5 
and n=60, 5 is a common factor between a and n.  Although the prime 
factorization of 60 includes two odd prime factors, 3 and 5, and 22, the 
common factor, 5, is ignored so there should be 4 roots according to 
Theorem 1, case ii.  Even if two to some power is a common factor of a 
and n, its divisibility into n still affects the number of roots.  As 
another example, let a=165 which has 3, 5 and 11 as factors.  Let 
n=10920, which has the following factors: 3, 5, 7, 13 and 23.  Ignoring 
the common factors of 3 and 5, n has two remaining odd prime factors 
and a factor of 23.  Using Theorem 1, case iii, there are 16 roots to the 
polynomial.
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TECHNICAL INFORMATION

This paper was originally typeset on an Apple Macintosh 
computer using Microsoft Word with Equation Editor.  Body text is in 
New York 12 point, with symbols set in Symbol 12 point.  Superscripts 
and subscripts are set in point according to level.  A computer 



program written in ThinkPascal was used to tabulate the number of 
roots and to calculate the actual roots to the polynomials.  It is 
included as an attachment.

ATTACHMENT

Given: x2 −1 ≡ 0 (mod n)

n    # of roots    n   # of roots    n   # of roots
1 1 101 2 1001 8
2 1 102 4 1002 8
3 2 103 2 1003 4
4 2 104 8 1004 4
5 2 105 8 1005 4
6 2 106 2 1006 8
7 2 107 2 1007 2
8 4 108 4 1008 4
9 2 109 2 1009 16
10 2 110 4 1010 2
11 2 111 4 1011 4
12 4 112 8 1012 4
13 2 113 2 1013 8
14 2 114 4 1014 2
15 4 115 4 1015 4
16 4 116 4 1016 8
17 2 117 4 1017 4
18 2 118 2 1018 2
19 2 119 4 1019 2
20 4 120 16 1020 16
21 4 121 2 1021 2
22 2 122 2 1022 4
23 2 123 4 1023 8
24 8 124 4 1024 4
25 2 125 2 1025 4
26 2 126 4 1026 4
27 2 127 2 1027 4
28 4 128 4 1028 4
29 2 129 4 1029 4
30 4 130 4 1030 4
31 2 131 2 1031 2



32 4 132 8 1032 16
33 4 133 4 1033 2
34 2 134 2 1034 4
35 4 135 4 1035 8
36 4 136 8 1036 8
37 2 137 2 1037 4
38 2 138 4 1038 4
39 4 139 2 1039 2
40 8 140 8 1040 16
41 2 141 4 1041 4
42 4 142 2 1042 2
43 2 143 4 1043 4
44 4 144 8 1044 8
45 4 145 4 1045 8
46 2 146 2 1046 2
47 2 147 4 1047 4
48 8 148 4 1048 8
49 2 149 2 1049 2
50 2 150 4 1050 8
51 4 151 2 1051 2
52 4 152 8 1052 4
53 2 153 4 1053 4
54 2 154 4 1054 4
55 4 155 4 1055 4
56 8 156 8 1056 16
57 4 157 2 1057 4
58 2 158 2 1058 2
59 2 159 4 1059 4
60 8 160 8 1060 8
61 2 161 4 1061 2
62 2 162 2 1062 4
63 4 163 2 1063 2
64 4 164 4 1064 16
65 4 165 8 1065 8
66 4 166 2 1066 4
67 2 167 2 1067 4
68 4 168 16 1068 8
69 4 169 2 1069 2
70 4 170 4 1070 4
71 2 171 4 1071 8



72 8 172 4 1072 8
73 2 173 2 1073 4
74 2 174 4 1074 4
75 4 175 4 1075 4
76 4 176 8 1076 4
77 4 177 4 1077 4
78 4 178 2 1078 4
79 2 179 2 1079 4
80 8 180 8 1080 16
81 2 181 2 1081 4
82 2 182 4 1082 2
83 2 183 4 1083 4
84 8 184 8 1084 4
85 4 185 4 1085 8
86 2 186 4 1086 4
87 4 187 4 1087 2
88 8 188 4 1088 8
89 2 189 4 1089 4
90 4 190 4 1090 4
91 4 191 2 1091 2
92 4 192 8 1092 16
93 4 193 2 1093 2
94 2 194 2 1094 2
95 4 195 8 1095 8
96 8 196 4 1096 8
97 2 197 2 1097 2
98 2 198 4 1098 4
99 4 199 2 1099 4
100 4 200 8 1100 8

program mathresearch1;
{This ThinkPascal program calculates and lists the roots to the }
{polynomial x2 − a2 ≡ 0 (mod n) in Z/nZ.  It also computes the    }

{number of roots to the polynomial.  The values of a and n can }
{easily be changed within the program. }

var
a2, {The value of a squared}
n, {The value of n, that is the modulo}
root, {The value of a calculated root to the polynomial}
root2minusa2, {The value of x squared minus a squared}



rootcounter {The number of roots} : longint;
begin

showtext;
a2:=1;
for n:=1 to 1000 do

begin
rootcounter := 0;
if (n mod a2 <> 0) or (a2 = 1) then

write(‘n is :’, n);
for root := 1 to n do

begin
root2minusa2 mod n = 0) then

begin
root2minusa2:=(root*root)-a2;
write(root);

end;
end;

write(‘number of roots=’,rootcounter);
writeln;

end;
end.


