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ABSTRACT

While a polynomial of degree m has at most m distinct roots in a
field, it may have more than m roots in the ring of integers modulo n.
The objective of this research is to describe a method for counting the
number of roots of a polynomial in a ring modulo n without having to
calculate each root. This research extends the work of Scott Fabbri,

who examined polynomials of the form X°- a*° 0 in 2/nZ where a°

- . . . 2
divides n. This work examines polynomials of the same form where a

and n are relatively prime. A rule is stated which tabulates the
number of roots to any such polynomial and a method for building a
polynomial with a given number of roots is also detailed.

This research examines polynomials of the form X*-a’°0 jn 2/nz

2 . . . R
where @ and n are relatively prime. Three main results will be
demonstrated:

1/ Given n, the number of roots can be predicted.

2/ The number of roots for any given n is always a power of
two.

3/ A rule for building a polynomial with a given number of roots



is specified.

LEMMA 1. When (a,n) = 1, X’ - @°° 0(mod n) has the same number of

roots as X - 1° 0(mod n).

Proof: Let y be a root toX - @°° 0(mod n)
then Y ° az(mod n)
O y*'@he I(mod n)
U (yah?-1° O(mod n)
so Y2 isa corresponding root for X*- 1° 0(mod n).
Furthermore Y2 is unique because for any root z to
x*- @’ ° 0(mod n) where z does not equal y, 22" does not

equal ya"

Next, given n, it is determined how many roots there are to X - 1° 0

(mod n). First , note that 1 and n-1 are always roots since 1*- 10 O(mod

n) and (N~ 1)*- 1° On(n- 2)° 0 (mod n).

Since X - 1° 0(mod n) can be rewritten as X’ ° 1(mod n), finding roots
is equivalent to finding elements of order 2 in the multiplicative group
* *

of Zn (that is, ZM). Note that 1, the unity, is also a root. Note that Z" is

* * * *
O - w . a3 . . an -0 %*q %2q %3 Oy
isomorphic to 2%~ 2% 29" .7 7" where "T% % "% 4 " is the

prime factorization of n. Gauss shows that:

a/ if p is an odd prime, then ZP" and 72" are cyclic groups of

order k=(p-1)p™M-1 for all natural numbers m and both are isomorphic
to Zx , which has one element of order two, namely k/2.

b/ if p =2, then



*
Z2 is cyclic of order 20 = 1.

*
7% s cyclic of order 21 = 2 and it is isomorphic to Z,, which

has one element of order two, namely 1.

*

72" is the direct product of a subgroup of order 2 and a

cyclic subgroup of order 2m-2 and it is isomorphic to Zy" Zm-2,
m- 2
which has three elements of order two (ie. (0, 2 ),
m- 2

(1, 2 ), and (1,0)).

*
Therefore the number of elements of order two in ZN is dependent on
the number of different prime factors of n and the power of 2 in the
prime factorization of n. Gauss' work and Lemma 1 lead to the
following theorem concerning the number of roots to X - 1° 0(mod n).

Keep in mind that the unity satisfies the polynomial in every case.

THEOREM 1. Let z be the number of different odd prime factors of
n, let r be the number of roots and let m be the
highest power of two that divides n.

i/ r=22ifm=0o0or1
i/ r=2z*1ifm=2
iii/ r=2272ifm?:3 3

Obviously, the number of roots is always a power of two. Lemma 1
proves that these formulas apply to polynomials of the form X*- a’°0
(mod n) where (a,n)=1. Armed with Theorem 1, a rule for building a

polynomial with a given number of roots can now be specified in the
next theorem.

THEOREM 2. For any given number of roots, r, which must be a
power of two, n can be specified for which the

equation, X°- a°° 0 (mod n), will have r roots.

Different rules apply to the following cases:



a/ If it is desired for n to be odd, construct n as the product of
logor odd prime factors (each having any power).

Example- To construct a polynomial with 8 roots, take the
product of 3 (log»8) odd prime factors as n suchasn=3-5-7 = 105.

b/ If n must be even but not divisible by 4, construct n as the
product of log>r odd prime factors (each having any power) and 2.

Example- To construct a polynomial with 16 roots where n is
even but not divisible by 4, construct n as the product of 4 (log>16)

odd prime factors and the number 2 suchasn=3-5-7-11-2 =2310.

c/ If n must be even and divisible by 4, construct n as the
product of log,r-1 odd prime factors (each having any power) and
four.

Example- To construct a polynomial with 32 roots where n is
even and divisible by 4, construct n as the product of 4 (log»,32-1) odd
prime factors with the number 4 suchasn=3-5-7-11-4 = 4620.

d/ If n must be even and divisible by 2 to some power greater
than 2, construct n as the product of log,r-2 odd prime factors (each

having any power) and 2 to the necessary power.

Example- To construct a polynomial with 64 roots where n is
even and divisible by 16, construct n as the product of log,64-2 = 4
odd prime factors and the number 16 suchasn=3-5-7-11-16=1
8480.

According to the rules above, the smallest value n, for which the
polynomial, X* - a*° 0(mod n), has:

8 roots is 3- 8 = 24.

16 roots is 3-5- 8 = 120.

32 rootsis 3-5-7- 8 = 840.

64 roots is 3-5-7-11- 8 = 9240.



128 roots is 3-5-7-11-13:-8 = 120120.

Each "smallest” value of n is found by taking the product of the

smallest consecutive odd primes and 23. Each odd prime "contributes”
a factor of two in the resulting number of roots. A factor of four is

"contributed" towards the number of roots by 23.
FUTURE RESEARCH

While this theory explains a method for counting the number of
roots to X’ - 8’ ° O(mod n) where a and n are relatively prime, it could

be extended to include a method for counting the roots when a and n
are not relatively prime and a’ does not divide n. It is conjectured

that the roots can be counted similarly by counting odd prime factors
of n and noting two's divisibility into n as long as the common factors
(except for two) between a and n are ignored. For example, with a=5
and n=60, 5 is a common factor between a and n. Although the prime
factorization of 60 includes two odd prime factors, 3 and 5, and 22, the
common factor, 5, is ignored so there should be 4 roots according to
Theorem 1, case ii. Even if two to some power is a common factor of a
and n, its divisibility into n still affects the number of roots. As
another example, let a=165 which has 3, 5 and 11 as factors. Let
n=10920, which has the following factors: 3, 5, 7, 13 and 23. Ignoring
the common factors of 3 and 5, n has two remaining odd prime factors
and a factor of 23. Using Theorem 1, case iii, there are 16 roots to the
polynomial.
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TECHNICAL INFORMATION

This paper was originally typeset on an Apple Macintosh
computer using Microsoft Word with Equation Editor. Body text is in
New York 12 point, with symbols set in Symbol 12 point. Superscripts
and subscripts are set in point according to level. A computer



program written in ThinkPascal was used to tabulate the number of
roots and to calculate the actual roots to the polynomials. It is
included as an attachment.
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72 8 172 4 1072 8
73 2 173 2 1073 4
74 2 174 4 1074 4
75 4 175 4 1075 4
76 4 176 8 1076 4
77 4 177 4 1077 4
78 4 178 2 1078 4
79 2 179 2 1079 4
80 8 180 8 1080 16
81 2 181 2 1081 4
82 2 182 4 1082 2
83 2 183 4 1083 4
84 8 184 8 1084 4
85 4 185 4 1085 8
86 2 186 4 1086 4
87 4 187 4 1087 2
88 8 188 4 1088 8
89 2 189 4 1089 4
90 4 190 4 1090 4
91 4 191 2 1091 2
92 4 192 8 1092 16
93 4 193 2 1093 2
94 2 194 2 1094 2
95 4 195 8 1095 8
96 8 196 4 1096 8
97 2 197 2 1097 2
o8 2 198 4 1098 4
99 4 199 2 1099 4
100 4 200 8 1100 8

program mathresearchl;
{This ThinkPascal program calculates and lists the roots to the }

{polynomial X*- a*° 0(mod n) in Z/nZ. It also computes the }
{number of roots to the polynomial. The values of a and n can }

{easily be changed within the program. }
var

az, {The value of a squared}
n, {The value of n, that is the modulo}
root, {The value of a calculated root to the polynomial}

root2minusa2, {The value of x squared minus a squared}



rootcounter {The number of roots} : longint;
begin
showtext;
a2:=1,
for n:=1 to 1000 do
begin
rootcounter := 0O;
if (N mod a2 <> 0) or (a2 = 1) then
write(‘'nis ’, n);
for root := 1 to n do
begin
root2minusa2 mod n = 0) then
begin
root2minusa2:=(root*root)-a2;
write(root);
end,
end,
write(‘number of roots=’,rootcounter);
writeln;
end,
end.



